Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Ray J. Butcher, ${ }^{\text {a* }}$ Jeffrey C. Bottaro $^{\text {b }}$ and R. Gilardi ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ${ }^{\text {b }}$ SRI International, Menlo Park, California 94025, USA, and ${ }^{\text {c }}$ Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375, USA

Correspondence e-mail: gilardi@nrl.navy.mil

Key indicators

Single-crystal X-ray study
$T=93 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.024$
$w R$ factor $=0.063$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Potassium 1,3,4,6-tetranitro-2,5-diazapentalene

The structure of the potassium salt of the dianion of $1,3,4,6-$ tetranitro-2,5-diazapentalene is reported, viz. $2 \mathrm{~K}^{+} \cdot \mathrm{C}_{6} \mathrm{~N}_{6} \mathrm{O}_{8}{ }^{2-}$. Only three atoms of the central 2,5-diazapentalene skeleton are unique, as the anion possesses $2 / m$ symmetry. The potassium cation is nine-coordinate, forming $\mathrm{K}-\mathrm{O}$ and K N bonds to five different 1,3,4,6-tetranitro-2,5-diazapentalene anions.

Comment

Pentalene is a thermally unstable compound belonging to the class of destabilized antiaromatic π-systems (Randic, 1977; Gutman et al., 1977). Stabilization of the pentalene system can be achieved by steric shielding (Hafner \& Süss, 1973) or by the introduction of donor groups in the $1,3,4$, and 6 positions and acceptor groups in the 2 and 5 positions (Gais \& Hafner, 1974). According to molecular orbital (MO) calculations (Jartín et al., 2002; Gutman et al., 1977), 2,5-diazapentalene is expected to be non-aromatic, while 1,3,4,6-tetradonor-2,5-diacceptor-substituted pentalenes should exhibit aromatic stabilization and a delocalized π-bonding system, as well as being strong bases and readily forming dicationic 2,5-diazapentalene derivatives (Closs \& Gompper, 1987; Closs et al., 1988). The structures of one example of both of these types have been reported, viz. a sterically hindered neutral 1,3,4,6-tetrakis(dimethylamino)-2,5-diazapentalene (Closs et al., 1988) and a cationic 1,4-bis(dimethylamino)-3,6-bis(iodo)-2,5diazapentalene triiodide (Virnekaes et al., 2001). However, it is well known that the introduction of nitro groups into organic molecules markedly increases their acidity. For instance, the $\mathrm{p} K_{a}$ of phenol is 9.89 while that of picric acid (2,4,6-trinitrophenol) is 0.38 (Dean, 1999). Hence the 1,3,4,6-tetranitro-2,5-diazapentalene moiety is a strong acid and readily forms dianionic salts.

(I)

We report here the structure of the potassium salt of the dianion of 1,3,4,6-tetranitro-2,5-diazapentalene, (I). The structure consists of two potassium cations and one 1,3,4,6-tetranitro-2,5-diazapentalene dianion. Only three atoms of the central 2,5-diazapentalene skeleton are unique, as the anion possesses $2 / m$ symmetry. The potassium cation is nine-coordinate, forming $\mathrm{K}-\mathrm{O}$ and $\mathrm{K}-\mathrm{N}$ bonds to five different

Received 23 June 2003

Accepted 8 July 2003
Online 17 July 2003

Figure 1
View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level.

Figure 2
The molecular packing of (I), viewed along the b axis.

1,3,4,6-tetranitro-2,5-diazapentalene anions, at bond distances ranging from 2.8214 (15) to 3.0458 (11) \AA and bond angles ranging from 53.446 (19) to $148.33(3)^{\circ}$. Within experimental error, the diazapentalene moiety is planar (mean deviation $0.003 \AA$) with atom O 2 having the largest deviation [0.282 (2) Å]. A comparison of the metrical parameters of the diazapentalene anion with those of the corresponding neutral and cationic moieties shows that the largest changes occur in the bond distances to the aza nitrogen $[\mathrm{N} 1-\mathrm{C} 2=$ 1.3384 (15) A compared with average values of 1.3765 and $1.3885 \AA$ found for the neutral (Closs et al., 1988) and cationic (Virnekaes et al., 2001) moieties, respectively]. Due to the shortening of the $\mathrm{C}-\mathrm{N}$ bonds in the five-membered rings, there is a corresponding increase in the exocyclic angle ($\mathrm{C} 2-$ $\left.\mathrm{C} 1-\mathrm{C} 2^{\prime}\right)$ to the extremely large value of $151.13(17)^{\circ}$. If both
rings are coplanar (as they are in the present instance) and regular, their internal ring angles would be 108°, leading one to expect a value of 144° for the exocyclic angle [360-(2× 108) ${ }^{\circ}$].

Experimental

Crystals suitable for X-ray crystallography were supplied by Dr Jeffrey C. Bottaro, Menlo Park, California. Details of the synthesis will be published elsewhere.

Crystal data

$2 \mathrm{~K}^{+} . \mathrm{C}_{6} \mathrm{~N}_{6} \mathrm{O}_{8}{ }^{2-}$
$M_{r}=362.32$
Monoclinic, $C 2 / m$
$a=11.7540$ (15) \AA
$b=9.6390(13) \AA$
$c=5.1732(7) \AA$
$\beta=112.946$ (2) ${ }^{\circ}$
$V=539.73(12) \AA^{3}$
$Z=2$
$D_{x}=2.229 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2017
reflections
$\theta=5.7-58.2^{\circ}$
$\mu=0.94 \mathrm{~mm}^{-1}$
$T=93$ (2) K
Plate, orange
$0.25 \times 0.10 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
699 independent reflections
665 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=28.2^{\circ}$
$h=-15 \rightarrow 15$
$k=-11 \rightarrow 12$
$T_{\text {min }}=0.684, T_{\text {max }}=0.928$
$l=-6 \rightarrow 6$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0318 P)^{2}\right. \\
& \quad+0.526 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{K}-\mathrm{N} 1$	$2.8214(15)$	$\mathrm{O} 2-\mathrm{N} 2$	$1.2371(15)$
$\mathrm{K}-\mathrm{O} 1^{\mathrm{i}}$	$2.8477(10)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.3384(15)$
$\mathrm{K}-\mathrm{O} 2^{\mathrm{ii}}$	$2.8600(11)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.4169(15)$
$\mathrm{K}-\mathrm{O} 1$	$2.9945(10)$	$\mathrm{C} 1-\mathrm{C} 1^{\text {iv }}$	$1.426(3)$
$\mathrm{K}-\mathrm{O} 2^{\mathrm{iii}}$	$3.0458(11)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.4274(12)$
$\mathrm{O} 1-\mathrm{N} 2$	$1.2461(14)$		
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 2 \mathrm{v}$	$105.97(14)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2^{\mathrm{vi}}$	$151.13(17)$
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{O} 1$	$121.83(11)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2$	$116.65(10)$
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 2$	$119.59(10)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$112.58(12)$
$\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 2$	$118.57(10)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$130.64(12)$
$\mathrm{C} 1^{\mathrm{iv}}-\mathrm{C} 1-\mathrm{C} 2$	$104.43(8)$		

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (ii) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (iii) $\frac{1}{2}-x, \frac{1}{2}-y,-z$; (iv) $1-x,-y,-z$; (v) $x,-y, z$; (vi) $1-x, y,-z$.

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge the financial support from the Office of Naval Research, Mechanics Division. RJB acknowledges the ASEE/Navy Summer Faculty Research Program for support during the summer of 2003.

References

Bruker (2001). SMART (Version 5.624), SAINT (Version 6.04) and SADABS (Version 2.03) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Closs, F. \& Gompper, R. (1987). Angew. Chem. Int. Ed. Engl. 26, 552-554.
Closs, F., Gompper, R., Nöth, H. \& Wagner, H.-U. (1988). Angew. Chem. Int. Ed. Engl. 27, 842-845.
Dean, J. A. (1999). Lange's Handbook of Chemistry, 15th ed. New York: McGraw-Hill.
Gais, H. J. \& Hafner, K. (1974). Tetrahedron Lett. p. 771.

Gutman, I., Milun, M. \& Trinajstic, N. (1977). J. Am. Chem. Soc. 99, 16921704.

Hafner, K. \& Süss, H. U. (1973). Angew. Chem. 85, 626.
Jartín, R. S., Ligabue, A., Soncini, A. \& Lazzeretti, P. (2002). J. Phys. Chem. A, pp. 11806-11814.
Randic, M. (1977). J. Am. Chem. Soc. 99, 444-450.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Virnekaes, B., Gompper, R. \& Polborn, K. (2001). Private communication to the Cambridge Structural Database Cambridge Structural Database, refcode NAWDOE. Crystallographic Data Centre, 12 Union Road, Cambridge, England.

